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Figure 1: Connected squares

1 The Main Result
In this part we prove the following result:

Theorem 1.1 Let G be a wheel-free bipartite graph which is signable to be
balanced and contains connected squares. If the graph G has no biclique
cutset, then there exist some connected squares E = CS(P1 , P2, P3 , P4) and a
2-join, separating V(P 1 ) U V(P 2), from V(P) U V(P4).

We consider connected squares CS(P, P2, P3, P4 ) in a wheel-free bipartite
graph G which is signable to be balanced and we define Pi, 1 < i < 4 to be
the subpath obtained from Pi by removing its endnodes. We assume that
a, b, c, d E V' and e, f, g, h E Vr and we use the notation of Figure 1.
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Figure 2: Strongly adjacent nodes

Theorem 2.1 Let v be a strongly adjacent node to connected squares E =
CS( Pi, P2, P3, P4). Then one of the following holds:

" Node v has exactly two neighbors in E, both contained in Pi, for i =
1,2,3,4.

" Node v is of one of the following types, see Figure 2:

Type a Node v has three neighbors in E, two of them being a, c or e, g
or b, d or f, h. If v E V' , the third neighbor is in AI or in ['.If
v E V', the third neighbor is in P33 or in P4.

Type b Node v has exactly two neighbors in E which are a, c or e,9g
or b, d or f, h.

Type c Node v has exactly two neighbors in E and if v E Vc, then v
has one neighbor in 1, and one in P2 f v EV', then vhas one
neighbor in P3 and one in P'4.

Proof. Let w be a strongly adjacent node to E, and assume w.l.o.g, that
w E Vc. Then w cannot be adjacent to all the nodes in the set le, f, g,h}
otherwise w is the center of a wheel. This implies that w cannot have neigh-
bors in all the paths P, P2, P, P4, otherwise, assume w.l.o.g, that w is not

Sadjacent to e, then there is a 3PC(w, e).
S Now assume w.l.o.g, that w has no neighbors in P4 and consider the

.parachute IH having a, g, c as short top, a, P, b, f and c, P2, d, f as long sides
and P3 as middle path. Then N(w) n V(E) = N(w) n3 V(11). Hence we

.. apply Theorem 2.1(111) to the parachute 1I. The first case of the above
theorem corresponds to the first case of Theorem 2.1(111). If node w is of
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Type a[2.1(III)], then w is of Type b in this theorem and if node w is of
Type b[2.1(III)], then w is of Type c in this theorem. Node u; cannot be of
Type c[2.1(III)], else f is the center of an odd wheel. Node w cannot be of
Type d[2.1(III)], else there is a 3PC(h, a) or a 3PC(h, c).

Furthermore wv cannot be of Type e[2.1(III)] or of Type h[2.1(III)] or of
Type i[2.1(III)1 or of Type o[2.1(II1), else w has a neighbor in P4 . If w is of
Type g[2.1(III)], then w is a twin of a node in E.

We finally examine the case in which w is of Type f[2.1(III)]. Let w, be
the neighbor of w in V(P) \ {a} and w2 be the neighbor of w in V(P 2) \ {c}.

If w, 3t b and w2 #4 d, there is a 3PC(w, b). If w, = b and w2 0 d, there
is an odd wheel with center b. So we must have w, = b and w2 = d. Hence
w is of Type a. 0

Definition 2.2 Let S.(E) be the set of nodes adjacent to nodes e and g and
a node in P1 . Note that, for any node a' E S.(E), there are connected squares

' containing a' but not a. When no confusion can occur, we simply write Sa
for S.(E). The sets Sc, Se, Sg, Tb, Td,Tf,Th are defined analogously. Define
S~c to be the set of nodes w such that N(w) nl V(E) = {e,g}. Note that, a
node in Soc may replace either a or c in connected squares that contain seven
of the nodes a, b, c, d, e, f, g, h. The sets Seg, T6d, T1h are defined analogously.
Finally, let S = S. UScUS, USUS, CUSg9 and T = TbUTdUTIUThUTbdUTfh.

As a consequence of Theorem 2.1, the set Sa is made up by node a and
all the Type a[2.1] nodes that are adjacent to e and g and a node in 1 . The
set S., is made up by all the Type b[2.1] nodes that are adjacent to e and
9. Furthermore the set S is made up by the node set {a, c, e, g} and all the
nodes that are strongly adjacent to ]E and have two neighbors in {a, c, e, 91.

Lemma 2.3 The sets S and T are disjoint and no node of S is adjacent to
a node of T.

Proof: The first property follows immediately from Theorem 2.1. If the
second property does not hold, there is a 3-path configuration connecting a
node in {a,c,e,g} and anode in {b,d,f,h}. 0

Let v be a node in S.c US., and consider the following classification of the
paths in the family P,(E) of direct connections between v and T, avoiding
the set S \ {v}. When no confusion arises, we write P,, instead of P,(E).
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Classification 2.4 Let P = x1, x2,. .. , x, be a direct connection in P, where
x, is adjacent to v and x,, is adjacent to a node in T.

" P is attached if xn is adjacent to a node in Tb U Td U Tf U Th

" P is detached if x, is not adjacent to any node in Tb U Td U T U Th.

Hence xn is adjacent only to nodes in Tbd U T1 h.

The above classification induces a classification of the strongly adjacent nodes
of Type b[2.1]:

Classification 2.5 Let v E S~c U Sg.

" Node v is attached if v has at least one attached direct connection in
P,.

" Node v is detached if P, is nonempty and all the direct connections in
P, are detached.

" Node v is separable if 1P, is empty.

Similarly, each node w E Tbd U Tfh is classified as attached, detached,
separable, based on the direct connections in P,, between w and S, avoiding
T \ {w}.

In the remainder of this section we study properties of a direct connection
P = x,x 2 ,. . ,x, in P,, and we assume that v E Sac and that x, is adjacent
to v.

Definition 2.6 A direct connection P = x1, X2,... , x, in P,, is minimal if,
in the subgraph induced by the nodes in V(P) U V(E), no direct connection
P' E P,, exists, such that

V(PI) \ V(E) C V(P) \ VP

Remark 2.7 The following properties hold for a minimal direct connection

in P,,.

" If v is detached, then every direct connection in P, is minimal.

* Let P = x1 , x2 , .. . , xn be a minimal direct connection, and let xi be the
node with highest index in V(P) \ V(E). Then no node xi, i < j - 1 is
adjacent to a node in V(E) \ {a,c,e,g}.



Lemma 2.8 Let v E S, be an attached node, and let P = X1,X 2,.. .,x,n be
an attached minimal direct connection in Pt,, where X,, is adjacent to a node
t E Tb U Td U T! U Th and xi is the node of highest index in V(P) \ V(E).
Then the following holds:

(i) Node t belongs to Tb U Td, say t E Tb.

(ii) The nodes of N(xi) n V(E) are contained in P1 .

(iii) Node a is adjacent to at most one node xi, i < j and no node xi, i < j
is adjacent to a node in the set {c, e, g}.

(iv) Node X, cannot be adjacent to a node t E Tb and to a node t' E Td.

Proof: Since P is a minimal direct connection in Pt,, no node x1, 1 < 1 <
i - 1 is adjacent to a node in V(E) \ {a, c, e,g}. We now divide the proof
into the following claims:

Claim 1 If xj is strongly adjacent to E and is of Type c[2.1], then no
node xi, i < j is adjacent to a node in the set {a, c, e, g}.

Proof of Claim 1: Assume that xj has a neighbor z, in P1 and z2 in P2 .
Let xi, i < j be the node of highest index adjacent to a node x* E {a, c, eg}.

If x = e, the following three paths induce a 3PC(b, e).

Q, b, f, P3, Q 2 -- b, h, P41,g, c,e ; Q3 -- b,...,IZ11 Xj, PzX,,Jxi, e

Similarly, if x = g, There is a 3PC(b, g).
If x* = a, then z, is adjacent to a, else there is a 3PC(zl, a). Now let Q be

the shortest path from xi to e, using intermediate nodes in V(Pi,,,) U {v}.
Then the hole H = xj, P,,, Xi, Q le, P3, f, b,..., zi, xi induces a wheel with
center a.

If x" = c, the proof follows by symmetry and if xi has a neighbor in P3

and a neighbor in P4 , the proof is identical.

Claim 2 The set N(xj) n V(E) is contained in one of the sets V(P),
V(P 2), V(P3 ), V(P4).

Proof of Claim 2: Assume the contrary holds. Then, by Theorem 2.1 and
the fact that xj V SUT, node xj is of Type c[2.1]. Assume that node xi has
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Figure 3:

neighbors zi E P1 and z2 E P2 . By Claim 1, the following three paths induce
a 3PC(e, xj), see Figure 3(a).

Q1 = e,V, X, P.l,Xj Q 2 e-a,...,Z1,j Q3"" e,C,''',7Z2, Xj

Assume now that xi has neighbors z3 E/3 and z4 E P4 , see Figure 3(b).
Then v and xi are not adjacent, else there is a wheel with center xi. Now,
by Claim 1, there is a 3PC(v, xi).

Claim 3 Let z be a node in {b, d, fh), , E {P 1, P2 , P3, P4 } be the path
whose endnode is z and let w E {a,c,e,g} the other endnode of Pi. If t E Tz,
then no node xi, I < j - 1 can be adjacent to a node of V(E) \ {w}.

Proof of Claim 3: Assume that t E Th and that P contains a node xi,
i < j, adjacent to a node in the set {a, c, e}. Let x, be the node of highest
index, adjacent to a node in the set {a, c, e}. As a consequence of Claim 2,
the set N(xi) n V(E) is contained in P4 (possibly, N(xi) n V(E) is empty
when j = n). If x, is adjacent to a or c there is a 3PC(t, a) or a 3PC(t, c).
If x, is adjacent to e, there is a 3PC(e, d). If t E Tb U Td U Tf, the proof is
identical.

We now prove Part (i) of Lemma 2.8: Assume t E Tf U Th, say t belongs
to Tf, see Figure 4(a). Then by Claim 2, the set N(xj) n V(E) is contained
in P3 and by Claim 3, no node xi, 1 < j, is adjacent to a node in the set
{a, c, g}. Then the following three paths induce a 3PC(b, g).

Q1 = b,t,P,v,g Q2 =b,P,a,g Q3 =b,h,P 4,g

7
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Figure 5: Attached direct connections

Part (ii) now follows from Part (i) and Claim 2. Part (iii) follows from
the assumption that the graph contains no wheel and Claim 3.

We finally prove Part (iv). It follows from Part (iii) that no intermediate
node of P is adjacent to a node in E. This shows the existence of a 3PC(t, g),
see Figure 4(b). 0

Remark 2.9 Lemma 2.8 shows that, up to symmetry, Figure 5 depicts all
the possible attached direct connections in Ps, where, in Figure 5(a), node a
may not be adjacent to a node xi of P and node xi may have two neighbors
in P1.

We now characterize detached direct connections in P,,, where v is a
detached node.
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Lemma 2.10 Let P = X1,X 2,. .,X, be a direct connection in ',,, where
x, is adjacent to a detached node v E S~c and X, is adjacent to a node
t E Tbd U Tf h. Then P satisfies the following properties;

* No node xi, 1 < i < n is adjacent to a node in E.

* Node t belongs to Tbd.

Proof: Since v is a detached node, then no node xi, 1 < i < n is adjacent to
a node in V(E) \ {a,c,e,g}. Let xt be the node with highest index adjacent
to a (unique) node in the set {a, c, e, 9}. Assume t E Tbd. If X1 is adjacent to
a or c, there is a 3PC(a, f) or a 3PC(c, f). If xi is adjacent to e or g, there
is a 3PC(e, t) or a 3PC(g, t). If t E Tfh, the proof is identical. Hence the
first part of the lemma follows. The second part now follows immediately,
for, if t E TIh, there is a 3PC(b,g). 0

3 Bicliques in Connected Squares

Definition 3.1 Consider the following node sets, associated to connected
squares E:

" S'(E) = S UScUSUSU{x E ScUS :x is attached }U{x E Sc:x
is detached }. When no confusion arises, we write S' instead of S'(E).

SS"=SUS USc USgU{xE S,,cUSg :x is attached }U{XE Sg :x

is detached).

" T'=TbUTdUTfU ThU{x E TbduTfh:X is attached }U{x E Tbd :X
is detached}.

* T"= TbUTdUTUTh U {x E T UTfh :x is attached } U {x E Tp,:x

is detached}.

" S* = S'U S" =S \{x E Sc U S, :x is separable).

• T* = T' U T" = T \ {x E Tbd U Tfh x is separable}.

We denote by Ks,(E), Ks2(E), KT,(E), KT-(E), Ks.(2), KT.(E) the sub-
graphs of G induced by the above node sets. Again, when no confusion is
possible, we write Ks, instead of Ks,(E).
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The goal of this section is to prove the following theorem:

Theorem 3.2 Each of the subgraphs KS,, Kso, KT,, KT, is a biclique in
connected squares E.

Furthermore, Ks. is a biclique if and only if KT. is a biclique.

The following lemmas show that new connected squares can be obtained
from E by replacing two paths from {P, P2, P3, P4} by (attached or detached)
minimal direct connections. All the combinations of pairs of paths needed
for the proof of Theorem 3.2 will be considered in the lemmas.

Definition 3.3 Let x be a node in S0 \ {a}. Then x belongs to a unique
connected squares E*, such that V(E*) \ V(E) = {x}. Connected squares E"
is said to be obtained from E by substitution of node a with node x. When
x = a, it will be convenient to write, by extension, that E* = E is obtained
by substitution of node a with node x.

Let v E Sac(2) be an attached node, having minimal attached direct
connection P = X1 , X2, .. ,X,, in P,,, where x,n is adjacent to a node t E
Tb(E). Then Lemma 2.8 shows the existence of connected squares E* =
CS(v, P, t, P2, P3, P4). Then E" is said to be obtained from E by substitu-
tion of path P with v, P, t.

Remark 3.4 Let v E S.,(E) and t E Td(E) be two detached nodes linked
by a detached direct connection P in P ,,. Then Lemma 2.10 shows the
existence of connected squares E" = CS(v, P, t, P2, P3 , P4) and E*" =
CS(PI, v, P, t, P=3, P4) obtained from E by substituting respectively P with
v,P,t and P2 with v,P,t.

Furthermorc P is a direct connectio, in both 'P,, ond 'Pt.

Lemma 3.5 Let u E So(E) US(E)UTb(E)uTd(E) and v E S(E)US,(E)U
T (E) U Th(E). W.l.o.g. assume u E S.(E) and v E S,(E) U Tf((E).

Let E,, be the connected squares obtained from E by substituting node a
with u. Then connected squares E,, can be obtained from E,, by substituting
a node of E, with v. Furthermore, if E,,, is defined by substituting first node
v and then node u, then E,. and E,,,, coincide.

Proof: We show that u and v are adjacent if and only if both u and v belong
to either S(E) or T(E). If v E S,(E), then u and v are adjacent, else there is
a 3PC(c, f). If v E Tf(E), then u and v are adjacent, by Lemma 2.3. Now
the proof follows. 0
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Lemma 3.6 Let u be a node in S.(E) and P be a minimal direct connection
in P. between an attached node V E S,(E) and a Type a[2.1] node w E T1(E).
Let E,, be obtained from E by substituting a with u and E, be obtained from
E by substituting P3 with v, P, w. Then u can be substituted for a in E,, and
v, P, w can be substituted for P3 in E,, and the two connected squares thus
obtained coincide.

Proof: We show that u is adjacent to v and u is not adjacent to a node in
{w} U V(P).

By Lemma 2.3, nodes u and w are nonadjacent. Node u is adjacent to v
and is not adjacent to a node of P, otherwise u is a strongly adjacent node
in E, not satisfiying Theorem 2.1. 0

Lemma 3.7 Let P be a minimal direct connection in P, between an attached
node u E S,(E) and t E Tb(E). Let Q be a minimal direct connection in P,,
between an attached node v E Seg(E) and w E TX(E). Let E, be obtained from
E by substituting P with u, P, t. Let S,, be obtained from E by substituting
P3 with v, Q, w.

Then v, Q, w can be substituted for P3 in Eu and u, P, t can be substituted
for P, in E, and the two connected squares thus obtained coincide.

Proof: We show that u and v are adjacent, t and w are adjacent, and no
other adjacency exists, between nodes in {u,t} U V(P) and {v,w} U V(Q).
We first prove the following claim:

Claim Nodes t and w are adjacent. Node t is not adjacent to a node in
V(Q) U {v. Node w is not adjacent to a node in V(P) U {u}.

Proof of Claim: The first part of the claim follows from Lemma 3.5.
Assume that t is adjacent to a node in V(Q) U {v}. Then t is a strongly

adjacent node in E., violating Theorem 2.1. The proof of the claim is now
complete by symmetry.

Now node u cannot have a neighbor in V(Q) U {w), else u is a strongly
adjacent node in Z,,, violating Theorem 2.1. Similarly, v cannot have a
neighbor in V(P) U {t}.

Let E* be the connected squares obtained by substituting b with t and f
with w.

No node of P is adjacent to a node of Q, else u or v is attached in E*,
having a minimal direct connection in P1 or P,, not satisfying Lemma 2.8.
Finally u and v are adjacent, else there is a 3PC(e, t). 0
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Lemma 3.8 Let u be an attached node in Sac(E), having minimal direct
connection P in P, to a node t E Tb(E). Let v E Seg(E) be a detached
node, having direct connection Q in P,, to a node w E Tfh(E). Let E, be
obtained from E by substituting P with u, P, t. Let E, be obtained from E
by substituting P3 with v, Q, w. Then v, Q, w can be substituted for P3 in E,,
and u, P, t can be substituted for P in E,, and the two connected squares thus
obtained coincide.

Proof: Again, we show that u and v are adjacent, t and w are adjacent
also, and no other adjacency exists between nodes in {u,t} U V(P) and
{v,w} U V(Q).

Let ET be the connected squares obtained fron E by substituting b with
t.

Then nodes t and v are not adjacent, else v is a strongly adjacent node
in Et, violating Theorem 2.1. If t is not adjacent to w or if t is adjacent to
a node of Q, then node v is an attached node in Et, having minimal direct
connection in P,, violating Lemma 2.8. Hence t is adjacent to w and t is not
adjacent to any node in {v} U V(Q).

Now u is adjacent to v, and no other adjacency exists, between the nodes
in V(P) U {u} and V(Q) U {v,w}, else w is an attached node in E2,, having
an attached minimal direct connection in 1Pu, not satisfying Lemma 2.8. 0

Lemma 3.9 Let u be a node in S0(E). Let v E Sg(E) be a detached node,
having direct connection P in P,, to a node w E Tf h(E). Let E, be obtained
from E by substituting a with u. Let E,, be obtained from E by substituting
P3 with v, P, w. Then v, P, w can be substituted for P3 in E,, and u can be
substituted for a in E,, and the two connected squares thus obtained coincide.

Proof: If u is adjacent to w, node w violates Theorem 2.1 in E,,. If u
is adjacent to P, the node w has an attached direct connection, violating
Lemma 2.8. If u is not adjacent to v, there is a 3PC(b, e). 0

Lemma 3.10 Let u be a detached node in Sac(E), having direct connection
P in 1',, to a node t E lbd(E). Let v E S,_(E) b; a detached node, having
direct connection Q in P,, to a node w E Tfh(E). Let E,, be obtained from E
by substituting P1 with u, P, t. Let E,, be obtained from E by substituting P3

with v, Q, w.
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(i) If u and v are adjacent, v, Q, w can be substituted for P3 in Eu and
u, P, t can be substituted for P in E, and the two connected squares
thus obtained coincide.

(ii) If u and v are nonadjacent, no adjacency exists between the nodes in
{u,t} U V(P) and {v,w} U V(Q).

Proof: By Lemma 2.3, nodes u and w are nonadjacent. If w is adjacent to
P, there is a detached direct connection in P:,, which violates Lemma 2.10.
By symmetry, t is not adjacent to {v} U V(Q).

If u and v are adjacent, then t is adjacent to w, else there is a 3PC(c, u).
This proves Part (i).

If u and v are nonadjacent, then t and v are nonadjacent, else there is a
3PC(b, t). rhis proves Part (ii). 0

Proof of Theorem 3.2: First we show that Ks, is a biclique.
Let u E Se U S.. Then u is adjacent to every node in Sa U Sc by Lemma

3.5, to every attached node in S,,c by Lemma 3.6 and to every detached node
in Sac by Lemma 3.9.

Let u E Se.. Then u is adjacent to every attached node in S"c by Lemma
3.7 and to every detached node in Se, by Lemma 3.8.

This shows that Ks, is a biclique. By symmetry, Ks-, KT, and K- are
bicliques. The last statement of the theorem follows from Lemma 3.10. 0

4 A Property of Bicliques

Theorem 4.1 There exist connected squares E* whose induced subgraphs
Ks. and KT. are both bicliques.

Proof: In this proof, when we say that nodes x and y are linked by a direct
connection P, we define P = x, P, y. Let E° = CS(P°,P°, P3, P) be con-
nected squares with P10 = ao,..., b°, p2 = cO,...,d, P3 = e0 ,...,fo, P0 =

.o,..., ho. If Ks.(E0 ) is not a biclique then, by Theorem 3.2 and Lemma
3.10, there exist one pair of detached nodes a1 E S~oco(E°), and b1 E Tbodo(EO)
linked by a direct connection P11 in Pao (E°)and another pair of detached
nodes g' E Soo(EO) and h' E Toho(E ° ) linked by a direct connection P4 in
Pi(E° ) such that no adjacency exists between the nodes of P and P41, see
Figure 6.

13
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Let V be the connected squares obtained by substituting in E' the path
P,' with the path P1

1. If Ks. (E) is not a biclique, then in E' there exist
a detached node a2 E Saio(E1 ), having direct connection P2 in P.2(E') to
a detached node b2 E Tbido(El) and a detached node g2 E Sogo(E1 ), having
direct connection P4 in P2(E') to a detached node h2 E Tfoho(E 1 ) such
that no adjacency exists between the nodes of P1 and P4. Note that, at this
stage, we are not ruling out a2 = a°.

By Lemma 3.10, the subgraph induced by V(El) U V(P,2) U V(P4) has no
other adjacencies except the ones shown in Figure 7.

We now show that the configuration of Figure 8 is induced, that is, the
only adjacencies of Po' and P' with the subgraph of Figure 7 are depicted
in Figure 8. In other words, we need to establish the adjacencies between
V(P4) and V(P4), between V(P4) and V(P°'), between V(P?) and V(P4)
and between V(P2) and V(P°').

Note that h2 # h1 , since h2 is adjacent to bi but h, is not. Furthermore
h2 o ho, since ho is adjacent to 62 but h 2 is not. The same argument shows
that b2 # b , g2 # g ,g2 # go and a2 0 a'.

Claim 1 Node g 2 is not adjacent to any node in V(P°) U V(P) \ {a0 }.

14
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Proof of Claim 1: Let EI be the connected squares obtained by substi-
tuting in Eo the path P40 with P4. Assume that node g2 has a neighbor in
P4. Then g2 is a strongly adjacent node in EI and by Theorem 2.1 node
g2 E Si (E1 ). Hence g2 is adjacent to a0 . Let E] be the connected squares
obtained by substituting g1 with g2 in El. Theorem 2.1 applied to E shows
that gl either belongs to S2(E*) or is an attached node in S~o92 (E2*). Since
a' is a detached or an attached node in E*,, Lemmas 3.6-3.9 applied to E]
show that a1 and g1 are adjacent, a contradiction.

Finally, node g2 cannot have a neighbor in V(P?) \ {a°}, otherwise g2 is
a strongly adjacent node in Eo, violating Theorem 2.1.

By symmetry, the above proof shows the following:

Claim 2 Node h2 is not adjacent to any node in V(P 1) U V(P4) \ {b°}.

Claim 3 No node of P4 is adjacent to or coincident with a node of P4.
Proof of Claim 3: Claims 1 and 2 show that no node of P4 is adjacent to

g2 or h2. Let x E V(P4) and y E V(P4) be two adjacent or coincident nodes
such that the length of the glx-subpath of P4' is minimized and the length of
the h2y-subpath of P4 is minimized. Then since g' and a1 are nonadjacent,
the following three paths induce a 3PC(e° , b), see Figure 9.

Q, = e Nodc g a ... axy, ... eh2 Q = eoda',P, b Q3 = e  Pafb

Claim 4 Nodes g2 and a are adjacent and nodes h2 and b° are adjacent.
Nodes g2 and b° are nonadjacent and nodes h2 and a° are nonadjacent.
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Proof of Claim 4: Since nodes g2, h2, ao and b° are attached or detached in
connected squares El, Theorem 3.2 shows that nodes g2 and a' are adjacent
if and only if nodes h2 and bo are adjacent. Assume that g2 and a° are
nonadjacent. Then the following three paths induce a 3PC(e° , d):

Q, = e°,P3,fo,do, Q2 = e°,a°,g',P 4 ,h',do, Qa = e0,a',g2,P4, h2 ,d0

If g2 and b° are adjacent, then g2 is a strongly adjacent node in Eo, violating
Theorem 2.1. By symmetry, the proof is now complete.

Note that Claim 4 implies that a2 0 a0 and b 3 b° .

Claim 5 No node of P4 is adjacent to or coincident with a node of Po.
Proof of Claim 5: Assume not. Then in Eo, node g2 or h2 is an attached

node having a minimal direct connection in P,,2(E ° ) or in 7Ph2(E ° ) violating
Lemma 2.8.

Claim 6 Nodes a2 and b2 are not adjacent to any node in P4.
Proof of Claim 6: Let l be the connected squares defined in the proof

of Claim 1. Node b2 can only be adjacent to h1 in P4, otherwise b2 is a
strongly adjacent node in El, not satisfying Theorem 2.1. If b2 is adjacent
to h', consider the chordless cycle H = b2, h1 , P4,g',cO, g 2,p ,h 2,b 1,fob 2,
see Figure 10. Then (H, bo) is an odd wheel. The proof for a2 follows by
symmetry.

Claim 7 Nodes a2 and b2 are not adjacent to any node in po.
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Proof of Claim 7: Assume by contradiction that node a2 has a neighbor
in Po'. Then node a2 belongs to Sa(E°). Now Lemma 3.9 applied to Eo shows
that a2 and g2 are adjacent, a contradiction.

Claim 8 No node of Pl is adjacent to a node in Po.
Proof of Claim 8: Assume not. Then nodes a2 and b2 are attached nodes

in E°. Again, Lemma 3.8 applied to E° shows that a2 and g2 or b2 and h2

are adjacent, a contradiction.

Claim 9 No node of Pl is adjacent to a node in P4.
Proof of Claim 9: Assume not. Then nodes a2 or V are detached nodes

in V° , having minimal direct connections in P.2(Eo) or in Pb 2 (E') violating
Lemma 2.10.

Claims 1-9 show that the graph of Figure 8 is induced.

Starting from E0, we construct a sequence of connected squares F,1, E2,

., E - 1, E' as follows:

If Ks. ( i1) and iT. (Ei-1) are not bicliques, there exist two pairs of non-
adjacent nodes ai, b' and g', h' that are detached in Vi-1 and have detached
direct connections P, and P4 in Pai(Ei-1 ) and in P9 ,(V - ) respectively.

Connected squares V2 are obtained by substituting in Ei-1 the path P -I

with Pl. Consider now the following property:

Property 10 Every V, 0 < i < n, satisfies the following:

10.1 Node h' is adjacent to do and to the nodes 1b, 0 < j < i - 1

10.2 Node g' is adjacent to co and to the nodes aJ, 0 < j < i - 1

10.3 Node a' is adjacent to e°,go and to no node gi, 1 < j < i

10.4 Node b' is adjacent to ho, f ° and to no node hJ, 1 < j < i

10.5 No node of V(Pfl) U V(P 4 ) is adjacent to a node in the set

U V(P°) U V(Pk) U V(P )
<<4 ~1<k<i-I
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Claims 1-9 show that Property 10 holds for E0, V and E2, and Figure
11 shows the adjacencies, according to Property 10, between nodes b' and
hi, 0 < 1 < 4.

Assume that E'- 1 does not satisfy the theorem. Hence with respect to
V-1, there exist two pairs of nonadjacent detached nodes a, b' and g', h'
having direct connections P, and P4 in ?a,(Zi -1) and in P,1 (Ei - ) respec-
tively. We inductively assume that Property 10 holds for n = i - 1 and we
show the following:

Claim 11 The nodes in the set V(P ) U V(P4) satisfy Property 10.
Proof of Claim 11: The above inductive hypothesis shows that for all

indices 1, m such that 0 < I < m < i- 1, the pairs of nodes a", bTn and gin, hm

constitute two pairs of nonadjacent detached nodes in El, having detached
direct connections Pm and P4m in P.a(EI) and in 1,(E') respectively. Hence
E' is also obtained from El by substituting PI with P '.

This implies that nodes a"- , b'- ' and g'- 1 , h'-1 constitute two pairs of
nonadjacent detached nodes with respect to El, for all 0 < 1 < i - 1. Hence
the graph G, induced by the node set

V( ,t) U V(P-) U) U -') U V(P) U V(P4)

is isomorphic to the graph of Figure 8 induced by the node set V(E,) U
V(P ) U V(P,) U V(P') U V(P42). Hence by applying Claims 1-9 to G', we
have that Properties 10.1, 10.2 hold. Furthermore Properties 10.3 and 10.4
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hold for j = i-1, and Property 10.5 holds except for the adjacencies between
nodes of V(Pl) U V(P/) and the nodes in the set ul<j<,- 2 V(P).

This implies that nodes a', b and gi, h' constitute a pair of nonadjacent
detached nodes with respect to VY, for all 0 < j < i - 1. Hence by applying
Claims 1-9 to the graph induced by the nodes V(E°)UV(P)UV(P) UV(PI')U
V(Pi) we have that no node of V(P/') U V(P4) is adjacent to a node in the
set U<j<i- 2 V(P ). This completes the proof of Property 10.5. Furthermore
Properties 10.3 and 10.4 hold for all 1 < j < i - 2. This proves Claim 11.

The proof of the theorem is now complete by finiteness of the graph,
since an unlimited sequence of connected squares EO,... , En,..., E implies
an unlimited growth in the size of the node set of the graph. 0

5 Biclique Cutsets and 2-Joins

Throughout this section we assume that connected squares E = CS(P, P2,
P3, P4 ) satisfy Theorem 4.1. That is, both subgraphs Ks. and KT. are bi-
cliques.

Theorem 5.1 If connected squares E contain a separable node v, then Ks.
or KT. is a biclique cutset, separating v from E.

Proof: By definition, no direct connection between v and T avoids S \ {v}.
Let Xk be the node of S \ {v} with highest index in a direct connection
P = Xi, x2,.... , x, between v and T. Then xk either belongs to SaUSCUSeUS
or is an attached or detached node in Sc U Seg. Hence Xk belongs to S*. 0

We now further assume that connected squares E contain no separable
node. Hence S = S* and T = T*. We define G*(V, E*) to be the partial
subgraph obtained from G(V, E) by removing the edge set E(Ks) U E(KT).

Definition 5.2 Let S c = S n Vc, S, = S n VT and Tc = T n Vc, Tr =
Tn V". Let Wc be the set of nodes which belong to at least one minimal direct
connection in P,, from a node v in SCUTC and let Z c = WCUScUTc. Similarly,
let Wr be the subset of nodes in at least one minimal direct connection from
a node in S' U Tr and let Zr = Wr U Sr U Tr.

Lemmas 3.5-3.10 show the following:
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Remark 5.3 For every pair of nodes u E Z c and v E Z r , there exist the
following connected squares:

Eu with the following properties:

" Connected squares Eu are obtained from E = CS(P, P2, P3 , P4) by sub-
stituting at most one path P or P2 with a path Pu.

* Node u belongs to Pu.

EV with the following properties:

* Connected squares E' are obtained from E = CS(P, P2, P3 , P4) by sub-
stituting at most one path P3 or P4 with a path P'.

" Node v belongs to P'U.

E"U with the following properties:

" Connected squares EuU are obtained from E = CS(P1 , P2, P3 , P4) by
substituting at most one path P or P2 with a path Pu and at most one
path P3 or P4 with a path P'.

" Node u belongs to Pu and node v belongs to Pv.

Lemma 5.4 The node sets Zc and Z' satisfy the following properties:

• In G*(V, E*), no node of Zc is adjacent to or coincident with a node of
Zr.

• In G*(V, E*), no node w V Zc U Zr is adjacent to a node in Zc and a
node in Zr.

Proof: The first part of the lemma follows directly from Remark 5.3.
Assume that a node w V Zc U Zr is adjacent to a node u in Z c and a

node v in Zr. Node w is not strongly adjacent to E, else w E S(E) U T(E),
contradicting the assumption w Zc U Zr. Let E = CS(Pu, P2, P3, P4),
EU = CS(P1 , P2 , P, P4) and EuU = CS(Pu, P2 , P', P4) be connected squares
defined in Remark 5.3 where w.l.o.g. we assume that P is substituted with
P* and P3 is substituted with P'. Theorem 2.1 shows that node w is a Type
a[2.11 node in E". This shows that w is a strongly adjacent node in Eu or
in E", violating Theorem 2.1. 0
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Theorem 5.5 Let E be a connected squares. If E(Ks) U E(KT) is not a 2-
join of G and neither Ks nor KT is a biclique cutset of G, then there exists
a path P = x1 , x 2, ... , xn, n > 1 with at least one of the following properties:

" The path P is a direct connection between ZC \ S c and Zr \ Tr, avoiding
Sc U Tr such that no node xi, 1 < i < n is adjacent to a node in T'.

" The path P is a direct connection between ZC \ S c and Zr \ Tr, avoiding
Sc U T" such that no node xi, 1 < i < n is adjacent to a node in S'.

" The path P is a direct connection between Zc \ Tc and Z, \ Sr, avoiding
Tc U Sr such that no node xi, 1 < i < n is adjacent to a node in T c.

* The path P is a direct connection between Zc \ TC and Zr \ Sr, avoiding
Tc U S" such that no node xi, 1 < i < n is adjacent to a node in S".

Proof: By Lemma 5.4 no node of Z c is adjacent to or coincident with a node
of Zr. Hence since E(Ks)UE(KT) is not a 2-join, there exists in G*(V, E*) a
direct connection P = x 1 , x 2,. .. ,xn between Zc and Zr, where x, is adjacent
to a node in Zc and xn is adjacent to a node in Z'. Furthermore Lemma 5.4
shows that n > 1.

If (N(x1 )U N(xn)) n (Zcu Zr) % S and (N(xi)U UN(x,,)) n (Zu Zr) % T,
then P belongs to at least one of the above four families of direct connections
and we are done. So assume w.l.o.g. that (N(xi) U N(xn)) n (Zc U Zr) c S,
that is, the set N(xi) n (Z c u Zr) is contained in Sc and the set N(x,,) n
(Zc U Zr) is contained in Sr.

Since Ks is not a biclique cutset, separating P from Zc U Zr, there exists a
direct connection Q = Yl, Y2,... , y.r between V(P) and Zc U Z' and avoiding
S, where y, is adjacent to a node in V(P) and yn is adjacent to a node in
Z c U Z". Note that for all 1 < i < m, we have that N(yi) n (Z c U Zr) C
S. Since Lemma 5.4 shows that yr cannot be adjacent to a node in Z'
and a node in Zr, we assume w.l.o.g. that N(ym) n (Zc U Zr) C Z and
N(ym) n (ZcU Zr) \ S # 0.

If some node of Q is adjacent to a node in S", let yi yrn be such a
node with highest index. Then the yiym-subpath of Q is a direct connection
between Zc \ Tc and ZT \ S', avoiding T' U Sr. Note that by construction,
an intermediate node of such subpath can not be adjacent to a node in Tc.
Hence the theorem follows.
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If no node yi, 1 < i < m in Q is adjacent to a node in Sc, let xj be
the node of P, adjacent to yi E V(Q) such that the length of the xlxj-
subpath P1j of P is the shortest. Then the path R = xi, Pl,Xj,Y1,Q,YM is
a direct connection between Z' \ Tc and Zr \ Sr, avoiding Tc U Sr such that
no intermediate node in R is adjacent to a node in Tc. 0

We now assume w.l.o.g. that P = x,,x 2,..,xn, n > 1 is a direct
connection between Zc \ Sc and Zr \ Tr, avoiding Sc U Tr such that no node
xi, 1 < i < n is adjacent to a node in T'.

Lemma 5.6 If x, is adjacent to a node of V(E) \ {a, c}, let u be such a
neighbor of x1 . Otherwise :et u be a neighbor of x, in Zc \ Sc(E).

If x,, is adjacent to a node of V(E) \ {f,h} let v be such a neighbor of xn.
Otherwise let v be a neighbor of x, in Zt \ Tr(E).

Let Eu = CS(Pu, P2, P3 , P4), EV = CS(P,, P2, Pl, P4), EUV = CS(PU, P2 ,
PV, P4) be connected squares obtained from E = CS(P1 , P2, P3 , P 4) as in Re-
mark 5.3, where we assume w.l.o.g. that P, is substituted with Pu and P3 is
substituted with Pv. Then the following holds:

(i) Either x, is a Type c[2.1] node in Eu and Eu = E (i.e. the path Pu
coincides with P1), or the set N(xi) n V(E2u) is contained in Pu.

(ii) Either x,, is a Type c[2.1] node in E"" and E" = E (i.e. the path P'
coincides with P3), or the set N(x,,) fl V(Euv) is contained in Pu.

(iii) The set N(xi) n V(E"u) C {au, c} for every node xi, 1 < i < n of P,
where au = V(Pu) n S.

Proof: We prove Part (i). Assume N(xi) n (V(E) \ {a,c}) # 0. Then x,
cannot be a Type a[2.11 or a Type b[2.1] strongly adjacent node to E, else
xi E S(E)UT(E). Hence Theorem 2.1 shows that either the set N(xl)OV(E)
is contained in P1 = Pu or x, is a Type c[2.11 strongly adjacent node to E
and, by construction, E" = E.

Assume N(x,) n (V(.) \ {a,c}) = 0 and N(xi)fn{a,c} = {a} or {c}, say
N(x1 ) n {a,c} = {a}. Let u E N(xi)fn(Z'\ S(E)) be a node belonging to
a direct connection R in P,, between a node w E S(E) and t E T(E). If P
can be substituted with w, R, t, then (i) follows. If P, cannot be substituted
with w, R, t, then P2 can be substituted with tv, R, t.
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Let Eu be the connected squares obtained with the above substitution.
Then x, is a strongly adjacent node in Eu, violating Theorem 2.1.

Finally, if N(xi) n (v(E) \ {a,c}) = 0 and N(xl) n {a,c} = 0, by con-
struction, node x, has no neighbors in P u. This completes the proof of Part
(i).

Part (ii) follows by symmetry. Now, by assumption, for every node
x,, 1 < i < n, the set N(x,) n (ZC U ZI) is contained in Sc(E) and Sc(E) n
V(Eu") = {au, c}. This proves Part (iii). 0

Theorem 5.7 The graph induced by V(E u ) U V(P) is not signable to be
balanced.

Proof: We consider the following cases:

Case 1 The path P contains a node xi, 1 < i < n adjacent to au and cu.
Proof of Case 1: Let xi be such a node with lowest index. Then xi is an

attached node in Eu', having the xi-lxl-subpath of P as attached minimal
direct connection in Px,. However this minimal direct connection violates
Lemma 2.8.

Case 2 The path P contains no node xi adjacent to both au and c and
node xI or node rn is of Type c[2. 1] in Eu'.

Proof of Case 2: Assume that x, is of Type c[2.1] and assume w.l.o.g.
that x, has a neighbor z, in Pu and a neighbor z2 in P2 . The same argument
used in the proof of Claim 1 of Lemma 2.8 shows that if a node xi, 1 < i < n
is adjacent to au, then z, and au are adjacent. If xi and c are adjacent, then
z 2 and c are adjacent. Finally, zi is not adjacent to au or z2 is not adjacent
to c.

If xn is a Type c[2.1] node in Eu, having neighbors z3 in F" and z4 in P54,
then no node xi, 1 < i < n is adjacent to au or c, else there is a 3PC(x,, au)
or a 3PC(x,, c). Hence there is a 3PC(zl, z3 ).

If xn is not a Type c[2.1] in *"", assume w.l.o.g. that z 2 and c are not
adjacent. Then there is a 3PC(z2, c). Hence x, cannot be a Type c[2.11 node.

The same argument shows that Xn cannot be a Type c[2.1] node.

Case 3 The path P contains no node xi adjacent to both a" and c, and
neither node x, nor node x, is of Type c[2.1].

Proof of Case 3: By Lemma 5.6, we can assume w.l.o.g. that N(x1 ) C
V(P") and that N(x,) C V(Pv). Let au and b" denote the endnodes of P"
and e", f" the endnodes of P".
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If there exists a node xi, 1 < i < n adjacent to c, let xj be such a node
with lowest index and let u' be the node of Pu adjacent to xi, such that the
length of the u'bu-subpath P* of Pu is shortest. Then the following three
paths induce a 3PC(c, h):

Q, = c, xj,...,zi,u',P*,b V,h; Q2 = c,g, P4,h; Q3 =c,P2, d,h

If no node zi, 1 < i < n is adjacent to c, there is again a 3PC(c, h). 0
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